Changes in binding number and binding degree of a graph under different edge operations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

The binding number of a random graph

Let G be a random graph with n labelled vertices in which the edges are chosen independently with a fixed probability p, 0 < p < 1. In this note we prove that, with the probability tending to 1 as n -+ 00, the binding number of a random graph G satisfies: (i) b(G) = (n l)/(n 8), where 8 is the minimal degree of G; (ii) l/q E < b(G) < l/q, where E is any fixed positive number and q = 1 p; (iii) ...

متن کامل

The Binding Number of a Graph and Its Anderson Number*

The binding number of a graph G, bind(G), is defined; some examples of its calculation are given, and some upper bounds for it are proved. It is then proved that, if bind(G) > c, then G contains at least 1 G 1 c/(c + 1) disjoint edges if 0 < c < 3, at least ( G I (3c 2)/3c 2(c 1)/c disjoint edges if 1 < c < $, a Hamiltonian circuit if c > $, and a circuit of length at least 3(1 G / l)(c 1)/c if...

متن کامل

reciprocal degree distance of some graph operations

the reciprocal degree distance (rdd)‎, ‎defined for a connected graph $g$ as vertex-degree-weighted sum of the reciprocal distances‎, ‎that is‎, ‎$rdd(g) =sumlimits_{u,vin v(g)}frac{d_g(u)‎ + ‎d_g(v)}{d_g(u,v)}.$ the reciprocal degree distance is a weight version of the harary index‎, ‎just as the degree distance is a weight version of the wiener index‎. ‎in this paper‎, ‎we present exact formu...

متن کامل

Best monotone degree conditions for binding number

We give sufficient conditions on the vertex degrees of a graph G to guarantee that G has binding number at least b, for any given b > 0. Our conditions are best possible in exactly the same way that Chvátal’s well-known degree condition to guarantee a graph is hamiltonian is best possible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Malaya Journal of Matematik

سال: 2020

ISSN: 2319-3786,2321-5666

DOI: 10.26637/mjm0804/0101