Changes in binding number and binding degree of a graph under different edge operations
نویسندگان
چکیده
منابع مشابه
Global Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملThe binding number of a random graph
Let G be a random graph with n labelled vertices in which the edges are chosen independently with a fixed probability p, 0 < p < 1. In this note we prove that, with the probability tending to 1 as n -+ 00, the binding number of a random graph G satisfies: (i) b(G) = (n l)/(n 8), where 8 is the minimal degree of G; (ii) l/q E < b(G) < l/q, where E is any fixed positive number and q = 1 p; (iii) ...
متن کاملThe Binding Number of a Graph and Its Anderson Number*
The binding number of a graph G, bind(G), is defined; some examples of its calculation are given, and some upper bounds for it are proved. It is then proved that, if bind(G) > c, then G contains at least 1 G 1 c/(c + 1) disjoint edges if 0 < c < 3, at least ( G I (3c 2)/3c 2(c 1)/c disjoint edges if 1 < c < $, a Hamiltonian circuit if c > $, and a circuit of length at least 3(1 G / l)(c 1)/c if...
متن کاملreciprocal degree distance of some graph operations
the reciprocal degree distance (rdd), defined for a connected graph $g$ as vertex-degree-weighted sum of the reciprocal distances, that is, $rdd(g) =sumlimits_{u,vin v(g)}frac{d_g(u) + d_g(v)}{d_g(u,v)}.$ the reciprocal degree distance is a weight version of the harary index, just as the degree distance is a weight version of the wiener index. in this paper, we present exact formu...
متن کاملBest monotone degree conditions for binding number
We give sufficient conditions on the vertex degrees of a graph G to guarantee that G has binding number at least b, for any given b > 0. Our conditions are best possible in exactly the same way that Chvátal’s well-known degree condition to guarantee a graph is hamiltonian is best possible.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaya Journal of Matematik
سال: 2020
ISSN: 2319-3786,2321-5666
DOI: 10.26637/mjm0804/0101